

James D. Rotunno **Structural Option**

The Butler Health System's - New Inpatient Tower Addition

AE Senior Thesis

April 13th, 2010 The Pennsylvania State University

BIMS BATTUR HEALTH SYSTEM

Building for the Future: A New Era Begins

```
Presentation Outline:
               > Existing Building
                              >Structural Systems
                              Design Codes & Standards
                              >Lateral Analysis
               Thesis Proposal & Goals
               ➤ Redesigned Gravity System (Depth Study)
                              System Description & Use
                               > Perceived Advantages & Disadvantages
                              Member shapes, sizes, capacities & detailing
                                                                                                                                                                                                    of the last line has been part of
                              Recheck Lateral System
                                                                                                                                                                                                AND REAL PROPERTY AND REAL PROPERTY.
                Connecting the Members (MAE)
                                                                                                                                                                                                     A SECRETARIA DE LOS DESCRIPTORIOS DE LOS DESCRIPTORIOS DE LOS DESCRIPTORIOS DE LOS DESCRIPTORIOS DE LOS DE 
                >Additional Considerations (Breadths)
                                                                                                                                                                                                     of the last own lives the last own lives
                              > Acoustical for conflicting spaces
                              >Architectural vs. acoustical
                              > Vibration of hospital floor systems
                              > Cost Comparisons
               > Overall System Conclusions
                              ➤ Revisit proposed system advantages & disadvantages
                              ▶Design limitations
                                                                                                                          Building for the Future: A New Era Begins
                > Acknowledgments
```


Project Team:

Owner: Butler Healthcare Providers **Owners Representative**: Ritter Const. Management Inc.

Construction Manager: Turner Construction

Architect: Design Group

Design Architect: Hammel, Green, Abrahamson HGA

Height: 134'-3" from lowest level Levels: 6 Above Grade & 2 Below Grade

Construction Dates: September 2008 – Summer 2010

Function: Primarily Surgery & Recovery

Cost: \$93M (GMP)

Size: 206,000 Square Feet

Presentation Outline:							
>Existing Building	Design Standards & Codes:		Des	ign Load Su	mmary:		
>Building Statistics	2006 IBC			Gravity Loa	ıds		
>Structural Systems		Description/location	DL/	ASCE 7-05/	HGA's	Reduction	Design
> Design Codes & Standards	2000 NFPA 101		LL	IBC 1607.9	values	available/used	value
> Lateral Analysis	2006 Guidelines for Design & Construction of Health Care Facilities			values			
> Thesis Proposal & Goals	1998 Pennsylvania Department of Health Rules and Regulations for Hospitals	Concrete floors	DL	90-115pcf	115pcf	NO/NO	115pcf
➤ Redesigned Gravity System (Depth Study)	ASCE 7-05: for wind, seismic, snow and gravity loads	/ * /		20-25psf	44psf	NO/NO	35psf
>System Description & Use	ACI 318-08: for concrete construction	1st floor mechanical	LL		125psf	YES/NO	125psf
≻Perceived Advantages & Disadvantages	AISC Thirteenth Edition: for steel members		LL	100psf	100psf	YES/NO	100psf
Member shapes, sizes, capacities & detailing	ASHRAE Handbook: HVAC Applications & Fundamentals 2003	Hospital floors	LL	40-80psf	80psf	YES/YES	80psf
> Recheck Lateral System > Connecting the Members (MAE)	PCI 2003 for vibration	Stairs & exits	LL	100psf	100psf	NO/NO	100psf
	ATC 1999 for vibration (ADAPT technical note TN209 3/21/09 for reference)	5 th floor roof	LL		115psf	NO/NO	115psf
	ATC 1999 for vibration (ADAFT technical note TN209 5/21/09 for reference)	Mech. Penthouse floor	LL		125psf	NO/NO	125psf
		Elevator Machine room	LL		125psf	YES/NO	
		Roof top equipment	LL		125psf	NO/NO	125psf
> Architectural vs. acoustical > Vibration of hospital floor systems		areas	LL		(or actual	NO/NO	123psi
> Cost Comparisons		dicas			equipment		
>Overall System Conclusions					wt.)		
Revisit proposed system advantages & disadvantages		Balconies	LL	100psf	100psf	YES/YES	100psf
Disc. > Design limitations		Snow	LL	24-30psf	24-30psf	NO/NO	24-30psf
Acknowledgments Building for the Future: A New Era Begin:							
			_				

Presentation Outline:												
> Existing Building	Wind Load Data for	North - South Base & Story Shears with Overturning Moment										
➤Building Statistics ➤ Structural Systems	Y 1 0 1 1 1			1000	Level	Height	Pressure	Force(F)	Shear (V)	Moment (M)		
Design Codes & Standards	North-South direction			ASCE section		ft	lbs/ft ²	kips	kips	Kips*ft		
>Lateral Analysis	Basic wind speed	V	90mph	6.5.4 (Figure 6-1)			Windward +					
> Thesis Proposal & Goals	Mean roof height	h	122ft				leeward					
> Redesigned Gravity System (Depth Study)	Wind directionality factor	K_d	0.85	6.5.4 (Table 6-4)	0- Ground	0	0	0	557.55	4086.84		
>System Description & Use	Importance Factor	I	1.15	6.5.5 (Table 6-1)	o diodila	· ·	Ü	v	557.55	1000.01		
≻Perceived Advantages & Disadvantages	Exposure category		С	6.5.6.3	1	14'-8"	24.60	15.69	557.55	4086.84		
➤ Member shap <mark>es, sizes</mark> , cap <mark>aci</mark> ties & detailing	Velocity pressure coefficient	K_z	varies	6.5.6 (Table 6-3)	2	29'-4"	26.61	72.10	541.86	3971.83		
> Recheck Lateral System > Connecting the Members (MAE)	Topographic factor	K _{zt}	varies	6.5.7 (Figure 6-4)	2	44'-0"	27.33	98.45	469.76	3443.34		
	Gust effect factor	G	0.857	6.5.8	5		27.61					
	Enclosure Classification		Enclosed	6.5.9	5	58'-8"		100.27	371.31	2721.70		
>Additional Considerations (Breadths)	Internal pressure coefficient	GC_{ni}	±0.18	6.5.11.1 (Table 6-3)	6	73'-4"	27.63	93.73	271.04	1986.72		
>Acoustical conflicting spaces	External pressure coefficients windward side	C	0.8	6.5.11.2 (Figure 6-6)	7	88'-0"	27.43	86.37	177.31	1299.68		
> Architectural vs. acoustical	External pressure coefficients leeward side	C	-0.5	(Figure 6-6)	8-Roof	102'-8"	26.91	62.53	90.94	666.59		
> Vibration of hospital floor systems > Cost Comparisons	Velocity pressure @ height Z	q_z	varies	6.5.10	9- P.H. 1	122'-0"	26.34	23.96	28.41	274.58		
> Overall System Conclusions	Velocity pressure @ mean roof height	***	30.41/ft ²		10- P.H. 2	135'- 0"	25.90	4.45	4.45	28.93		
Revisit proposed system advantages & disadvantages	Design wind load	q _h	determine			-	1	Base Shear =	557.55			
Disc > Design limitations		Г	uetermine				Overturnir	ng Moment =		22567.05		
Acknowledgments Building for the Future: A New Era Begins												
a service of the serv												

HOTELS
STUDENT HOUSING
CONDOS & APARTMENTS
TALL BUILDINGS

Project: Marriott Courtyard

Project: Lawrenceville Graduate Apartments at Princeton University

Presentation Outline: > Existing Building > Thesis Proposal & Goals Redesigned Gravity System (Depth Study) System Description & Use **▶** Perceived Advantages & Disadvantages Member shapes, sizes, capacities & detailing Recheck Lateral System **Connecting the Members (MAE)** Design loads & Connections >Additional Considerations (Breadths) NAME AND POST OFFI PARTY AND POST OFFI PARTY. > Acoustical conflicting spaces THE REAL PROPERTY AND PERSONS NAMED IN > Architectural vs. acoustical --->Vibration of hospital floor systems NAME AND ADDRESS OF THE OWN POST OF > Cost Comparisons > Overall System Conclusions ➤ Revisit proposed system advantages & disadvantages **▶**Design limitations **≻**Acknowledgments Building for the Future: A New Era Begins

Disadvantaaes: ❖Large lead times with this type of system

- Girders and columns would need fireproofing
- ❖ Much more efficient and cost effective at shorter spans
- ❖Column spacing may have to be reduced, increasing footing requirements
- ❖ Floor penetrations must be well coordinated with the slab

- designer/manufacture Advantages:
- Easy & fast to install ❖The lateral system can still be utilized
- No formwork required and concrete slabs are already at usable capacity
- when they arrive
- No intermediate beams in interior of bays needed
- **❖**Can be installed in any type of weather
- Other trades can start work underneath almost immediately
- *Additional unobstructed ceiling space for MEP's.
- ❖ Meets or exceeds floor fireproofing requirements
- ❖ Reduce noise transmission from floor to floor through baffled cavities
- ❖No increase in floor to floor heights
- ❖ Reduces overall weight of the structure

(ft) & Constant DL LL &	@ 80psf LL M _u @ 125psf Modified Shear Total Depth Non-composite Composite
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Modified Shear Total Depth Non-composite Composite
>Additional Considerations (Breadths) 14 207 260 (kips)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
> Architectural vs. acoustical	W 27x217 359.8 22.50 1328 1674
 Cost Comparisons Poverall System Conclusions W_m24x192 314.0 20.46 1171 1403 	W 24x192 314 0 20 46 1171 1403
>Revisit proposed system advantages & disadvantages & disadvantages & disadvantages & 18.91 985 1287	950 1193 W _m 18x211 345.0 18.91 985 1287
Design limitations W _m 14x193 233.6 15.44 652 877 Acknowledgments W _m 14x193 233.6 15.44 652 877	1014 1274 ""
BMS Building for the Future: A New Era Begins 32 1080 1358 W _m 10x68 70.1 12 286 Uncalcular to the Future of the	1080 1358 W _m 10x68 70.1 12 286 Uncalculated

Presentation Outline: >Existing Building > Thesis Proposal & Goals Redesigned Gravity System (Depth Study) > System Description & Use > Perceived Advantages & Disadvantages > Member shapes, sizes, capacities & detailing Recheck Lateral System **Connecting the Members (MAE)** Design loads & Connections AND REAL PROPERTY. **▶** Additional Considerations (Breadths) > Acoustical conflicting spaces IN RESIDENCE OF THE PARTY OF >Architectural vs. acoustical ➤ Vibration of hospital floor systems > Cost Comparisons > Overall System Conclusions ➤ Revisit proposed system advantages & disadvantages **▶**Design limitations **≻**Acknowledgments

Building for the Future: A New Era Begins

Modified D-Beam Girder Shapes

Other Designed Shapes

Presentation Outline: >Existing Building > Thesis Proposal & Goals Total Dead Load for Seismic Calculation Redesigned Gravity System (Depth Study) > System Description & Use ► Perceived Advantages & Disadvantages Member shapes, sizes, capacities & detailing ➤ Recheck Lateral System Connecting the Members (MAE) Floor weight Design loads & Connections **▶** Additional Considerations (Breadths) > Acoustical conflicting spaces 2906.4 >Architectural vs. acoustical 6391.5 ➤ Vibration of hospital floor systems 5943.7 A REAL PROPERTY AND PERSONS NAMED IN 4432.2 > Cost Comparisons 3900.5 > Overall System Conclusions 27760 3894.5 ➤ Revisit proposed system advantages & disadvantages 4225.7 **▶**Design limitations **≻**Acknowledgments $W_{T} = 31787.3 \text{ kips}$ Base Shear = 317.04 kips Building for the Future: A New Era Begins

Extended Shear Tab Modified Girder to Column Web

Presentation Outline:		_	_	_	_						
> Existing Building	R	Receive	r Room	Sound	Correc	tion As D	esigned				
> Thesis Proposal & Goals	Hz	63	125	250	500	1000	2000	4000	8000		
Redesigned Gravity System (Depth Study)											
Connecting the Members (MAE)	Max. dB	80	75	92	88	90	87	79	67		
Additional Considerations (Breadths)	Build up	+9	+9	+9	+9	+9	+9	+9	+9		
>Acoustical conflicting spaces											
> Architectural vs. acoustical	total	89	84	101	97	99	96	88	76		
> Vibration of hospital floor systems > Cost Comparisons	A weighting	-25	-15	-8	-3	+0	+1	+1	+1		
> Overall System Conclusions > Revisit proposed system advantages & disadvantages > Design limitations	A weighted adjusted	64	69	93	94	99	97	89	75		
> Acknowledgments	TOTAL (dBA)	64	70	93	95	100	102	102	102		
	Floor Systems Effectiveness Comparison										
	As Designed Proposed										
	25≥10	05-51=	54			25	5≥105-57	=48			
	25<54 NOT	Г АССЕІ	PTABLE			25<48	NOT ACC	EPTABLE			
BWS Building for the Future: A New Era Begins											

Presentation Outline:											Recei	iver Roo	m Soun	d Corre	ction w	th Acoust	ical Bar	rier		
> Existing Building	Receiver Room Sound Correction As Designed								Hz		63	125	250	500		2000	4000	8000		
> Thesis Proposal & Goals	Hz	63	125	250	500	1000	2000	4000	8000	Max. dl	3	80	75	92	88	90	87	79	67	
Redesigned Gravity System (Depth Study)	Max. dB	80	75	92	88	90	87	79	67	Build u	p	+6	+6	+6	+6	+6	+6	+6	+6	
Connecting the Members (MAE)		80								total	-	86	81	98	94	96	93	85	73	
Additional Considerations (Breadths)	Build up	+9	+9	+9	+9	+9	+9	+9	+9	(+A)		+1	+0	-1		-3	-4	-5	-5	
>Acoustical conflicting spaces	total	89	84	101	97	99	96	88	76	(+B)		-9	-9	-9	-9	-9	-9	-9	-9	
Architectural vs. acoustical	total			101		99		00		total		78	72	88	83	84	80	71	59	
> Vibration of hospital floor systems > Cost Comparisons	A weighting	-25	-15	-8	-3	+0	+1	+1	+1		posite TL	-	-10	-12	-16	-21	-26	-32	-	
Overall System Conglusions	A weighted	64	69	93	94	99	97	89	75	total	iposite 11	-	62	76		63	58	39		
> Overall System Conclusions > Revisit proposed system advantages & disadvantages	· ·	04	09	93	94	99	97	09	/5	A weigh	nting	-25	-15	-8	-3	+0	+1	+1	+1	
Positive limitations	adjusted									A weigh		20	47	68	64	63	59	40	7.2	
Acknowledgments	TOTAL (dBA)	64	70	93	95	100	102	102	102	adjuste			47	00	04	0.5	37	-10		
	TOTAL (ubA)	04	70	93	93	100	102	102	102	TOTAL		-	47	68	69	70	70	70	70	
		TOTAL								(uDA)		47	00	07	70	70	70	70		
THE RESERVE OF THE PARTY OF THE	Floor Systems Effectiveness Comparison Floor Systems Effectiveness Comparison with Sound Bo											Barriei								
	As D	As Designed Proposed								As Designed					•					
	25≥10)5-51=5	54			2	5≥105-57	7=48				73-51=2			Proposed					
	25<54 NOT	ACCEF	TABLE			25<48	NOT ACC	EPTABLE							25≥73-57=16 25>16 ACCEPTABLE					
BINS Building for the Future: A New Era Begins	20 011101						1.011100				25>22 A	CCEPTA	ARLE			25>16	ACCEP	IARLE		
Building for the ruture. A New Era begins																				

Presentation Outline: >Existing Building > Thesis Proposal & Goals Redesigned Gravity System (Depth Study) Connecting the Members (MAE) Additional Considerations (Breadths) Acoustical conflicting spaces >Architectural vs. acoustical Vibration of hospital floor systems Cost Comparisons > Overall System Conclusions > Revisit proposed system advantages & disadvantages > Design limitations >Acknowledgments IN RESIDENCE AND RESIDENCE. Building for the Future: A New Era Begins

Presentation Outline: >Existing Building	Acoustical Tre	atment VS	. Architectural Redesign	
> Thesis Proposal & Goals > Redesigned Gravity System (Depth Study)	Acoustical Considerations	Estimated Cost (\$)	Redesign Considerations	Estimated Cost (\$)
Connecting the Members (MAE)	Sound Barrier	7,500.00	Excavation of 8400ft ³	1440.00
Additional Considerations (Breadths)	Adhesive	450.00	Additional 60' of Foundation Walls (Ground)	25,645.00
Architectural vs. acoustical Vibration of hospital floor systems	Labor	15,840.00	Additional 44' of 8" Reinforced CMU Wall	4818.00
> Cost Comparisons			Additional Slab On Grade	9800.00
> Overall System Conclusions > Revisit proposed system advantages & disadvantages			Less 5 Columns @15'	-6263.00
> Revisit proposed system advantages & disadvantages > Design limitations > Acknowledgments			Additional 2 sets of double doors	6000.00
			Additional 30' of interior wall for storage area	1200.00
			Less $54'$ of Foundation Wall (1^{st})	-23,528.00
			Mechanical Considerations (pipes, ducts, sprinkler)	3500.00
BWS Building for the Future A New Fre Bosins	TOTAL	23,790.00	TOTAL	22,612.00
Building for the Future: A New Era Begins				

Presentation Outline: >Existing Building > Thesis Proposal & Goals Redesigned Gravity System (Depth Study) Connecting the Members (MAE) Additional Considerations (Breadths) >Overall System Conclusions Revisit proposed system advantages & disadvantages Design limitations Final Summary & Conclusions >Acknowledgments IN COLUMN TWO IS NOT THE OWN PORTY. Building for the Future: A New Era Begins

Limiting Factors

Large Opening Sizes

Dimension Between Top Bar & Bottom Flange

Hollow-core Plank Span

Use of Proposed System in a Hospital Building > Large openings required

>Increased structural costs

>Extra space in ceiling cavity desired (not reduced)

>System inflexibility Theoretically possible; NOT PROBABLE

Use of Proposed System in Other Structure Types

➤ Can reduce floor to floor depths by 1' - 1.5'

> Without reducing open unobstructed ceiling cavity space 🚱

> Reduces costs associated with façade, elevators, stairs, MEP runs, column lengths and sizes, bracing length and sizes, interior partition wall heights, fireproofing, Heating

& cooling costs.

▶Better acoustical and vibration aspects **POSSIBLE & PROBABLE**

Butler Health System: Owner

Kurt Johnson - Project Manager William Beck - Project Superintendent Megan Wortman - Field Engineer

Turner Construction: Construction Manager

HGA: Design Architect, Structural, Mechanical, Electrical Engineer Johanna H. Harris P.E. - Associate Vice President Jonathan Wacker

> Girder-Slab: Daniel G. Fisher Sr. - Managing Partner Peter Naccarato P.E. - Engineer

Pennsylvania State University: Department of Architectural Engineering Dr. Ali Memari, Ph.D., P.E., - Thesis Advisor Louis F. Geschwindner Jr., Ph.D., P.E. **Professor Emeritus AISC Vice President, Special Projects** M. Kevin Parfitt, P.E. - Thesis Faculty Director **Faculty & Staff**

Family & Friends

Presentation Outline: >Existing Building > Thesis Proposal & Goals Redesigned Gravity System (Depth Study) Connecting the Members (MAE) Additional Considerations (Breadths) >Overall System Conclusions > Final Summary & Conclusions >Acknowledgements **≻Questions** A SECRETARY OF THE PARTY. W 1000 CO 1000 Building for the Future: A New Era Begins

Questions / Comments

